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Abstract. Unmanned Ground Vehicles (UGVs) have been successfully
deployed in both research and industrial applications in structured set-
tings but are increasingly deployed in unstructured off-road settings. In
this context, motion planning in the presence of risks is crucial. Tradi-
tionally, mobile robotics has focused on positive obstacles, stationary or
moving, as the main source of risks. In this work, we focus on explicitly
quantifying and avoiding negative obstacles in addition to positive ones.
Negative obstacle detection in UGVs proves to be a key problem for
autonomous navigation, as negative obstacles do not register on typical
navigation sensors. Traditional obstacle detection techniques fail to iden-
tify these obstacles as dangerous, and therefore fail to incorporate them
when generating obstacle maps. In this work, we propose a risk-aware
planner that is able to combine different sources of risk. We focus on the
problem of negative obstacle detection and outline steps for incorporat-
ing other risks into our planner. Our results show that negative obsta-
cles are detected with mean Intersection over Union, Precision, Recall,
and F1 scores of 0.54, 0.64, 0.77, and 0.69, enabling risk-avoidant nav-
igation around ditches, curbs, and steep drop-offs. The system demon-
strates adaptive path planning that circumvents high-risk areas, though
performance is limited by occlusion effects and terrain sensitivity. The
code of our planner and experimental data is available open source at
github.com/KumarRobotics/risk mpc.
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1 Introduction

UGVs are central to modern robotics research and industry, enabling autonomous
navigation in unstructured, uncertain environments. From agriculture and de-
fense to search and rescue, UGVs must traverse complex terrain where safety,
reliability, and adaptability are critical. In this work, we build a framework for
risk-aware motion planning. Past work has approached traversability estimation
through model-based methods [9, 4] and learning-based techniques that infer
region traversability using predefined or implicit semantic affordances [8, 6] but
detecting negative obstacles and other unobservable risks remains a significant
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challenge. We consider motion planning with both observed obstacles (encoded
as constraints) and inferred obstacles (encoded as risk) in a layered framework.

Safe navigation requires accurate terrain assessment using onboard sensors
like LiDAR and stereo vision. Early methods relied on Digital Elevation Maps
(DEMs), using features such as slope and roughness to classify terrain. Geom-
etry based approaches dominate traversability estimation, using plane fitting,
slope, roughness, and uncertainty analysis. Negative obstacle detection, i.e. ob-
stacles that protrude or recess from the ground, remains challenging due to their
indirect observability; hybrid approaches combine geometric heuristics with ma-
chine learning to improve performance. Recent methods [10, 2, 7, 5] leverage
learned representations to predict traversability in complex terrain but often
focus on positive obstacles and require extensive training data. [1] highlights dif-
ficulties in perception when geometric cues are absent, such as ditches concealed
by foliage. Appearance-based methods use texture and color cues for terrain
classification [1], offering additional information where geometry is insufficient,
though they remain sensitive to lighting and occlusions. Challenges persist in
modeling uncertainty and achieving real-time performance, making traversabil-
ity estimation a cornerstone of risk-aware planning. Our contributions are a
unified risk-aware planning framework that combines different sources of risk by
integrating both positive and negative obstacles into a single planning system,
and a model-based negative obstacle detection method that uses geometric anal-
ysis of LiDAR scan patterns to identify deviations from expected ground plane
geometry. We present a layered Model Predictive Control (MPC) architecture
that generates dynamically feasible trajectories while incorporating risk through
modified A⋆ cost functions, and provide experimental validation on a Clearpath
Jackal platform in both semi-urban and rural environments. The implementa-
tion and data are available open-source to enable further research in risk-aware
autonomous navigation.

2 Technical Approach

Our system consists of various components such as a odometry, perception, plan-
ning, and control package (shown in Fig. 1. Communications and data handling
is facilitated by The Robotic Operating System (ROS) 2. For odometry, we use
Direct LiDAR Inertial Odometry (DLIO) [3] which takes in the raw point cloud
from the Ouster and outputs odometry estimates at 100Hz. The point cloud
and odometry is taken in by the perception package, which is responsible for
generating risk maps of the environment at 10Hz. These risk maps are then
used by the planning package to generate a coarse path and high-fidelity motion
plan, which the control package uses as a reference to generate control actions.
The reference trajectory generation nominally operates at 1Hz. The controller
executes at 15Hz. The reference trajectory and the control action are computed
by solving optimization problems formulated with CasADi1.

1 https://web.casadi.org

https://web.casadi.org
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Fig. 1: Autonomy architecture highlighting the overall flow of data between the
subsystems. LiDAR points are ingested by DLIO [3] to produce an estimate of
the robot’s pose. The point cloud is both fed into the negative obstacle detector
and processed by groundgrid [11] to segment non-ground points for the positive
obstacle detector. Both detectors produces occupancy grids, which are combined
to produce a risk map that is used by A⋆ to get a reference path. This reference
path is optimized to be dynamically feasible and sent to the low-level controller.

2.1 Obstacle Detection

In order to safely navigate in outdoor unstructured environments, the UGV
must be able to detect and avoid obstacles in its vicinity. We partition them
into positive and negative obstacles. We note that positive obstacles are always
dangerous, whereas risks are usually in the form of undetectable obstacles. All
forms of obstacle detection occur within a local horizon of the UGV and are
parsed into an occupancy grid centered at the location of the UGV with tunable
height, width, and resolution H, W , and res. For this work, these are set to
(H,W, res) = (100m, 100m, 0.4m).

Positive Obstacle Detection. The point cloud is processed by groundgrid [11],
which segments the points into ground points and non-ground points. The non-
ground points are projected onto the (x, y) plane and temporally averaged over
the last M maps, with an occupancy threshold of 0.75M . Then, the grid is
dilated by 0.75m. In this implementation, M is set to 30.

Negative Obstacle Detection. Point cloud data is passed through a model-
based detection system that searches for deviations in the ground points from
expected geometries. It computes how much areas deviate from the expected
nominal geometry, indicating the potential for risk, in this case, for negative
obstacle detections. Nominally, for a ground plane, a LiDAR produces a series
of concentric circles. Given the LiDAR mount heightHL and subsequent azimuth
angles αi and αj , the expected distance between the scan points Pi and Pj can
be calculated as Expected Distance(Pi, Pj) = HL/| tan(αi) − tan(αj)|. Fig. 2
provides a visual of each of these quantities.
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Fig. 2: HL denotes the LiDAR mount height. Two scan lines are shown corre-
sponding to azimuth angles αi and αj . Under nominal conditions when the UGV
is on a flat plane, the scans are expected to return points Pi and Pj . In the pres-
ence of a negative obstacle, the distance between the two points will be larger
than the expected distance.

Subsequent points in the LiDAR data that deviate from the expected model
are labeled as corresponding feature points. For every corresponding pair, the risk
metric is calculated as Risk Metric(Pi, Pj) = (Distance) / (Expected Distance).
The Risk Metric is then used to populate a local occupancy grid, where this Risk
Metric value is set for all cells spanned by the line segment between Pi and Pj .
The last M ′ occupancy grids are averaged, such that the value at a given cell
location is the median of the previous M ′ grids. M ′ is again set to 30 for this
implementation. To produce smoother transitions between the boundaries of the
identified negative obstacles and the surrounding environment, a Gaussian blur
is applied.
Combined Risk Map Generation. The positive obstacle occupancy grid and
the negative obstacle grid are merged to create a combined risk map to incor-
porate into a local 2-DOF UGV planner.

2.2 Path Planning & Control

Given a desired goal position, a coarse path is generated using the A⋆ algorithm.
The path is passed into a 2-Degree of Freedom (DOF) optimization architecture.
The first layer is an MPC optimization that generates a dynamically feasible
reference trajectory. The reference trajectory is passed into the second layer, a
smaller MPC optimization that generates control actions.
Coarse Path Generation. The coarse path is generated using A⋆. To allow for
arbitrary planning horizons, a larger map is constructed to encompass both the
UGV’s starting position and the goal position. The map is updated locally using
the combined risk maps. To account for risk in planning, the A⋆ cost between
two edges u and v is formulated as C(u, v) = c(u, v)·(1+λM(v)), where c(u, v) is
the euclidean distance, M(v) is the risk value at v, and λ is a hyperparameter to
modulate how risk-adverse the generated paths are. This formulation produces
trajectories that attempt to remain short while circumventing high risk areas.
The path is then made sparse using the Ramer-Douglas-Peucker algorithm, with
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ϵ = 0.35. Rectangular travel corridors are generated for each segment in the
sparse path with a width of Wr and an additional height buffer of Hr on either
end of the segment.

Dynamically Feasible Reference Trajectory Generation. The sparse A⋆

path and travel corridors are passed into the first layer of the optimization
architecture. A local goal is chosen along the path, such that the goal is the
last point on the path that remains within the local horizon of the combined
risk map. The optimization is outlined in Eq. 1.

min
x[·],u[·]

N−1∑
n=0

{
x̃[n]TRx̃[n] + u[n]TQu[n]

}
s.t. xn+1 = f(x[n], u[n]) (Dynamics Constraints)

x[n] ∈ Pj (Corridor Constraint)

xmin ≤ x[n] ≤ xmax (State Boundary Constraint)

amin ≤ (u[n]− u[n− 1])/dt ≤ amax (Acceleration Constraint)

umin ≤ u[n] ≤ umax (Input Limit Constraint)

x[0] = ξs, u[0], u[n] = 02×1 (Boundary Constraint)

(1)

x̃[n] denotes the error between the knot point and goal positions, and u[n] de-
notes the control input at knot point n. f is the robot dynamics. Pj denotes a
travel corridor. The travel corridor for knot point n corresponds to the travel
corridor for the segment in the coarse path that encompasses n/N% of the total
path length. The high-level MPC replans trajectories continuously as the UGV
navigates towards the goal position to account for changes in the risk map.

Control. The reference trajectory is passed into the second layer of the opti-
mization framework, which generates the next immediate control action. The
second layer is outlined in Eq. 2.

min
x[·],u[·]

N ′−1∑
n=0

{
(x[n]− xref[i+ n])[n]TR(x[n]− xref[i+ n]) + u[n]TQu[n]

}
s.t. xmin ≤ x[n] ≤ xmax (State Boundary Constraint)

x[0] = ξs (Initial State Constraint)

umin ≤ u[n] ≤ umax (Input Limit Constraint)

amin ≤ (u[n]− u[n− 1])/dt ≤ amax (Acceleration Constraint)

xn+1 = f(x[n], u[n]) (Dynamics Constraints)

(2)

xref denotes the reference trajectory from the first layer. i is the index of the
closest point in xref to the current position of the robot. N ′ is chosen to be much
smaller than the original reference trajectory horizon. The first control value of
the optimization is utilized as the control sent to the robot.
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3 Experiments and Results

Hardware Platform The proposed framework is implemented on a Clearpath
Jackal fitted with an Ouster OS1-64 LiDAR, which produces point clouds at a
nominal rate of 10Hz. It carries an onboard computer with an AMD Ryzen 5
3600 CPU, NVIDIA RTX 4000 Ada SFF GPU, and 32 GB of RAM.
Environments. We test our method in both a semi-urban office park and a
rural environment. First, an evaluation of the negative obstacle detection is
provided, where negative obstacle detections are compared to hand labeled data.
Second, an evaluation of the proposed framework is conducted in which a UGV
autonomously navigates to a goal in the presence of negative obstacles.

3.1 Negative Obstacle Detection Evaluation

The negative obstacle detector is evaluated in two different environments: a semi-
urban office park and a rural road setting. In both environments, the generated
risk maps are evaluated with ground truth labels, with the semi-urban office
park using hand-labeled masks from orthomaps and the rural setting using hand-
annotated point-cloud data.

Fig. 3: Images of the validation sites: a small ditch, large ditch, and sidewalk curb.
The top row shows the negative obstacles being detected, while the bottom row
shows the generated risk maps, along with the segmented point cloud. Magenta
corresponds to non-ground points. Darker cells indicate higher risk. Left: Small
ditch (traversable but visually salient). Center: Large ditch (too steep for the
UGV to exit). Right: Sidewalk curb (small but can get stuck).

Semi-Urban Office Park. There are three testing sites around the office park:
a small ditch (traversable but visually salient), a large ditch (a steep slope pre-
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Testing Site IoU Precision Recall F1

Small Ditch 0.4460 0.6960 0.5553 0.6164

Large Ditch 0.5697 0.7818 0.6803 0.7246

Curb 0.4348 0.7109 0.5174 0.5868

Table 1: Risk detection results from using the full risk map in the evaluation.

senting a navigation hazard), and sidewalk curbs (small abrupt recessions that
can trap the UGV). For each location, five trials were conducted. For collected
risk maps, negative obstacle masks were generated and compared against a hand-
labeled mask derived from an orthomap of the test site. Sample images of the
three test sites along with their corresponding detections are shown in Fig. 3.
Around the small ditch, additional negative obstacles, such as a curb behind the
UGV and segments of a curb to the front left, are also identified. The large ditch
is strongly detected on the left of the UGV as well as portions of a parking lot
curb on the right. The curb leading to a parking lot is only partially detected
because portions of the curb are obstructed by cars in the area. For the curb
experiments, the detector identifies borders on the left and corners on the right.

Table 1 reports the mean Intersection over Union (IoU), precision, recall,
and F1 scores for each test site over a 20m× 20m area, while Table 2 presents
the same evaluation metrics computed over 10m× 10m area. Cropping enables
a more focused and precise assessment, as risk detection accuracy degrades as
distance from the UGV increases. To better understand the failure modes in
negative obstacle detection, Fig. 4 visualizes the detection labels for each test
site. For the small ditch, only the steep, negative slopes are consistently detected.
In the vicinity of the large ditch, a curb in the adjacent parking lot is partially
occluded by positive obstacles, leading to incomplete detection. Additionally,
the relatively small height difference between the curb and the road surface
contributes to weak or missing negative obstacle labels. Some false positives are
also observed, which can be attributed to the smoothing effects introduced by
blurring the risk map.

Rural Environment. Point cloud data was collected along a road with ditches
on either side. The point clouds were hand-annotated to identify ditch boundary
points, which are then compared to feature points generated by the negative ob-
stacle detector. The mean IoU, precision, recall, F1 score, and Chamfer distance
were computed across LiDAR scans (Table 3). We emphasize the Chamfer dis-
tance metric, which measures closeness between point sets, as hand-annotated
labels can introduce noise.

Testing Site IoU Precision Recall F1

Small Ditch 0.6313 0.7434 0.8183 0.7716

Large Ditch 0.4773 0.5436 0.8016 0.6434

Curb 0.4983 0.6416 0.6886 0.6620

Table 2: Risk detection results from using the cropped risk map in the evaluation.
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Fig. 4: From left to right, the images show the detection labels of the small ditch,
large ditch, and the curb. Green is ground truth negative obstacles, and black
is ground truth safe terrain. Yellow indicates a correct labeling as a negative
obstacle and red indicates incorrect labeling as a negative obstacle.

Mean Metric Across 20 LiDAR Scans

IoU Precision Recall F1 Chamfer Distance

0.472 0.569 0.742 0.652 0.177

Table 3: Risk detection results on collected data from the rural environment.

3.2 Risk-averse Navigation

The UGV was commanded to navigate to goal positions near negative obstacles
at several semi-urban office park locations. The desired behavior was to either
circumvent negative obstacles or descend them in a risk-averse manner. Testing
sites included the small ditch, large ditch, a hill with sharp drop-offs, a sharp
descent in a park, and a long hill.

Large Ditch. The large ditch highlighted a challenge for the risk detection:
occlusion. At the start of the experiment, tall grass obscured the ditch, prevent-
ing early detection. As the UGV advanced alongside the ditch, portions of the
negative obstacle gradually came into view. Once the ditch came into view, the
generated plans began to adjust around areas with risk.

Small Ditch. This experiment revealed a limitation with the negative obstacle
detector: since the system detects negative slopes, positive slopes (like the ditch’s
far edge) aren’t identified as risks. Only the near edge was detected. In flatter
sections with low perceived risk, the UGV entered the ditch and became level
with terrain, no longer perceiving it as a negative obstacle.

Hill with Sharp Drop-Offs. The UGV successfully avoided a steep left-side
slope and chose a gradual descent path toward the goal, demonstrating effective
high-risk terrain identification and avoidance.
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Sharp Descent in Park. This scenario revealed a positive obstacle detection
failure mode. Starting at a higher altitude than the goal, foliage level with the
UGV marked the goal location as occupied, preventing the planner from gener-
ating a plan, despite valid paths existing. This highlights needs for better terrain
semantic integration and planning framework flexibility.
Long Hill. The negative obstacle detector performed well, with planned paths
tracing the hill boundary and avoiding drop-offs effectively. However, another
limitation emerged for positive obstacle detection. Rapid UGV movement caused
failures in detections from partial views. Combined with finite A⋆ replanning
rates, this resulted in collisions, emphasizing needs for improved planning fre-
quencies and mapping capabilities.

4 Lessons Learned & Future Work

Our experiments revealed three main failure modes in the current system: odom-
etry drift, sensitive positive obstacle detection, and slow planning rates. These
limitations collectively impacted the robot’s ability to navigate safely and con-
sistently in unstructured environments. Below, we discuss each issue in detail
and outline corresponding improvements for future work.
Noisy Odometry. The most significant source of error was odometry drift as
it drifted when the robot encountered vibrations and rapid changes in elevation.
This caused the estimated goal position to drift into unreachable or invalid areas,
such as inside positive or negative obstacles. In extreme cases, the drift placed the
robot outside the bounds of the global map, rendering planning infeasible. Future
work will explore more robust odometry solutions that integrate inertial sensing
and terrain-aware corrections to maintain localization in rough conditions.
Positive Obstacle Detection Methodology. The current positive obstacle
detection pipeline proved sensitive in dynamic and uneven environments. At
high speeds, many obstacles were missed due to temporal gaps in grid updates.
Moreover, uneven terrain caused obstacles to shift rapidly in the grid frame,
often disappearing before being registered as hazards. The approach struggles
with elevated obstacles relative to the ground, such as overhanging branches,
that may be at the same global height as the robot, but do not pose a risk as
the ground is much lower. To address this, we propose transitioning away from
segmented point cloud approaches and toward a column-wise analysis of vertical
LiDAR slices. By estimating the local ground height per column and classifying
obstacles relative to this baseline, the system can more reliably detect both
near-ground and elevated hazards.
Replanning Frequency. The global planner, based on A⋆, showed performance
bottlenecks when operating at scale. In large environments, especially those with
frequent changes in perceived risk, the planner struggled to update paths in real
time. This issue was further amplified by noise in the obstacle map caused by
odometry drift and poor segmentation—particularly in grassy areas—leading the
robot to believe it was stuck in an obstacle. Future work will focus on improving
the efficiency of the implementation.
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